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ABSTRACT

A variety of modifications to the modeled dissipation rate transport equation that have
been proposed during the past two decades to account for rotational strains are examined.
The models are subjected to two crucial test cases: the decay of isotropic turbulence in a
rotating frame and homogeneous shear flow in a rotating frame. It is demonstrated that
these modifications do not yield substantially improved predictions for these two test cases
and in many instances give rise to unphysical behavior. An alternative proposal, based on
the use of the tensor dissipation rate, is made for the development of improved models.

1This reseach was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
Science and Engineering, NASA Langley Research Center, Hampton, VA 23665.
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1. Introducton

Many turbulent flows of practical importance involve combinations of rotational and
irrotational mean strains. The rotational strains can arise from the effects of curvature, a
system rotation, or swirl, as well as from shear. Much of the motivation for formulating
second-order closure models has its origins in the desire to account for the distinct physical
effects of rotational and irrotational strains, in a framework where directional information
is incorporated. Reynolds stress models of the eddy viscosity type, since they only depend
on the mean velocity gradients through their symmetric part (i.e., the mean rate of strain
tensor), are oblivious to the presence of rotational strains. Consequently, these models
cannot distinguish between the considerably different turbulence physics exhibited in plane
shear, plane strain, and rotating plane shear flows - a deficiency that is now well-known
[1, 2]. However, the same deficiency still remains with the modeled form of the dissipation
rate transport equation that has been commonly used in the turbulence modeling literature
starting with the work of Launder and co-workers [3]. This frequently used model has
no explicit dependence on rotational strains; rotational strains can only have an indirect
effect through the changes that they induce in the Reynolds stress tensor. Such a limited
dependence is known to be detective, making it impossible to properly describe rotating
isotropic turbulence and swirling jets, among other turbulent flows [4, 5]. Consequently,
several independent researchers over the past two decades have tried to develop rotational
modifications to the modeled dissipation rate transport equation to resolve this problem.
These alterations will be the subject of the present study.

In this paper, a variety of previously proposed modifications to the modeled dissipation
rate transport equation will be considered:

(1) the Pope [51 model,

(2) the Hanjalic and Launder [6] model,

(3) the Bardina model [7], and

(4) the Raj [81 model.

These models represent a good cross-section of the rotational modifications to the modeled
dissipation rate transport equation that have been proposed during the last fifteen years.
Two flows from homogeneous turbulence will be used to test the models: (a) the decay of
isotropic turbulence in a rotating frame, and (b) homogeneous shear flow in a rotating frame.
These two test cases are chosen since they represent homogeneous flows whose structure is
significantly altered by rotation, without the added complication of walls or other sources
of mean turbulent diffusion. In this fashion, the question of the interaction of rotational
and irrotational strains can be studied in isolation, independent of the complicating features
introduced by solid boundaries and mean turbulent diffusion. The performance of each of the
models will be documented in detail and specific proposals will be made for the development
of improved models. A new model based on the tensor dissipation - formulated in order to -

include more directional information - will be proposed and tested.
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2. The Models and Test Cases to be Considered

We will restrict our attention to the incompressible flow of a viscous fluid with constant
properties. The velocity field v and pressure P are decomposed into mean and fluctuating
parts, respectively, as follows:

v=V+u, P=,P+p. (1)

The exact transport equation for the turbulent dissipation rate in homogeneous flows takes
the form [2]

= P. -. t(2)

where

P. = -2z . . 2v - (3)
az, ax, &ck axO O zk 8&, j92 ,

to = 2v (42u)
OxjOz, 4Zj&Ck 4

are, respectively, the production and destruction of dissipation terms given that C
2vo9u./8xi0ui/O:3j is the scalar dissipation rate and v is the kinematic viscosity of the fluid.
Here, since the turbulence is homogeneous, the overbar denotes a spatial mean, and the
superposed dot denotes an ordinary time derivative.

The modeled version of the transport equation for c that has been used widely in the
turbulence modeling community - which is due to Launder and co-workers [31 - takes the
form £ 2

i = C;. P- C.2-k (5)

wuhere P = -Uu-ho/cz1 is the turbulence production, and Co1 and C,2 are dimensionless
constants that typically assume the values of 1.44 and 1.92, respectively. Equation (5)
is obtained from (2) by making the assumption that the production (or destruction) of
dissipation is proportional to the production (or destruction) of turbulent kinetic energy,
i.e.,

P. Oc I0ro, 4. Oc elro (6)
where r0 is the turbulent time scale that is needed for dimensional consistency. The added
assumption that the turbulent time scale r0 is given by

O= (7)

then yields the modeled equation (5).
Due to the symmetry of the Reynolds stress tensor r,3 - u, it follows that

P= - (8)

where

1 + a(9)
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is the mean rate of strain tensor. Hence, (5) has no ezplicit dependence on the mean rotation
tensor

=i .- z - j). (10)
It therefore follows that the commonly used modeled dissipation rate equation can only
be affected indirectly by rotational strains through the changes that they induce in the
Reynolds stress tensor. As we will show later, this makes it difficult to properly describe
certain rotating turbulent flows.

The model suggested by Pope [5] is based on the addition of a mean vortex stretching
term and takes the form

= C. 1CP - C 3 K 2

c.- + C,3
3',pi1 (11)

in homogeneous turbulence where C,1 = 1.44, C,2 = 1.92, and C,3 = 0.79. The standard
e-equation is obtained in the limit as C, 3 --+ 0. In the modification proposed by Hanjalic
and Launder [6] to "sensitize the dissipation equation to irrotational strains," the c-equation
takes the following form in homogeneous turbulence:

K - C. 2 6 - Ca3Ke.,,ijem,, (12)

where ej, is the permutation tensor and C,i = 1.44, C, 2 = 1.92, and C, 3 = 0.27. Since,

-t 3', + Uy, (13)

it is clear that this modification introduces rotational strains; in the limit as C, 3 - 0 the
standard e-equation is recovered. The Bardina model [7, 9] takes the form

, = *0 C2 (14)

in a homogeneous turbulence, where

C:, = 1.50 - 0.015 K ( 1 (15)
K 1ZiZ, (16)

C,2 = 1.83 + 0.15KC ( 1t ,,,)(

are functions of the mean rotation tensor. The models (11), (12), and (14)-(16) are written
for an inertial frame. In a non-inertial frame, the rotation tensor Oij must be replaced by
the absolute mean rotation tensor

= Ulj + e,,ifl. (17)

where 11. is the angular velocity of the non-inertial frame relative to an inertial framing (see
Speziale [10]).
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R aj [8] developed a model based on an analysis of the exact transport equation of the true
dissipation. In an inhomogeneous turbulence, this exact transport equation contains terms
that depend explicitly on the rotation rate of the reference frame. Based on an empirical
argument, Raj [81 developed a simple correction term to account for the effect of rotations
which was guided by his turbomachinery research. For homogeneous turbulence, the model
proposed by Raj [81 takes the form

C P . ,2  + 3C "
i = C.2 T T- fle (+ 2' -rK 1/ (18)K 2

in a rotating turbulent flow, where fl is the angular velocity of the reference frame - which,
for simplicity, is aligned ahng the z direction - and r, is the component of Reynolds stress
tensor along the axis of rotation. Here, C. 3 is a constant of 0(1). In the limited practical
applications where this model has been used, C.3 has assumed different values ranging from
1 to 5. For simplicity, we will set C.3 = 5 (the largest of these values); C.1 and C,2 assume
the traditional values of 1.44 and 1.92, respectively. It must be said at the outset that (18)
does not constitute a general model and has some internal inconsistencies in the way it was
derived [11]. Nonetheless, the model does have some interesting features that are worth
testing in the problems to be considered in this study (e.g., the model directly accounts for
the effect of the rotationally induced anisotropy in the Reynolds stress tensor, along the axis
of rotation, on the dissipation).

In order to test these models in the flows to be considered, a Reynolds stress model is
needed. A simple second-order closure model is chosen - namely, the shortened form of the
Launder, Reece, and Rodi model which is now referred to as the "Basic Model" by Launder
and co-workers [12]. For a homogeneous turbulence in a rotating frame, this Basic Model of
Launder and co-workers takes the form [13]:

fi'j = (C2 - 1) ( ft + rik )

+(C2 - 2)(True.kjfl,, + "rke. ,flm) (19)

-cTa (r - Ki a2x, 26

where C and C2 are dimensionless constants that assume the values of 1.8 and 0.6, respec-
tively This model is derived by making two major assumptions - namely that the dissipation
rate tensor is isotropic, i.e.,

Cil= 60 (20)

and the pressure strain correlation is of the general form

flj = eAj(b) + KM tjkz(b) (21)

where Aj and M,,u are linear functions of the anisotropy tensor b.
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The first problem to be considered as a test case is isotropic turbulence in a rotating
frame. Here, an initially decaying isotropic turbulence wherein

r4= -K ii, C = CO, (22)

at time t = 0, is subjected to a solid body rotation with constant angular velocity

fl, = (0,0,fl) (23)

and vanishing mean velocity gradients

o-Y = . (24)
Oxi

The substitution of (23) - (24) into (19) - along with the use of the initial condition of
isotropy (22) - then yields the equation

k = -c (25)

where Ti, = !K6, 3 . This is the same form as its non-rotating counterpart. Hence, the
Launder, Reece, and Rodi model predicts that an initially isotropic turbulence subjected to
a rotution decays isotropically - a result that is consistent with the Navier-Stokes equations
[14, 15]. For rotating isotropic turbulence, the modeled e- transport equation takes the
standard form

= -Ca 2  (26)

(where C,2 = 1.92) for the Pope and the Raj models; consequently, these models do not
distinguish the difference between isotropic turbulence in a rotating frame and in an inertial
frame. The Bardina model, however, does have a non-zero rotational correction; for rotating
isotropic turbulence (14) takes the form

i = -C, 2  - C,311C (27)

where C.2 = 1.83 and C,3 = 0.15. Likewise, so does the Hanjalic and Launder model for
which we have the following c-transport equation in rotating isotropic turbulence:

= -C. 2  - 4C.3 KrI2  (28)

where C.2 = 1.92 and C,3 = 0.27.
The second problem to be considered is homogeneous shear flow in a rotating frame. The

mean velocity gradients here take the formft i 0 S 0 )
0 0 0 (29)
0 0 0
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which correspond to a plane shear. They are applied in a steadily rotating frame where the
axis of rotation is normal to the plane of the shear, i.e.,

n, = (0,0, f).

The substitution of (28) - (29) into (19) yields the Reynolds stress transport equation

3 2= riA& + AIC- 1.8--(i o-K6,3) + - 6,, (30)

where

5 5
= il 0 0 (31)

500 0

and P = -" 1 2S is the turbulence production. The c-transport equation for the Pope model
is given by

i = -C.1,l-'r(2S - C2 C (32)

_k K
in rotating shear flow. This is the same as the standard model due to the fact that the mean
vortex stretching term in (11) vanishes for any plane homogeneous turbulence. The Bardina
model for rotating shear flow is obtained by replacing C, 1 and C, 2 in (32) with

C,* = 1.50 - 0.0151,S - QlIK/ (33)

C:2 = 1.83 + 0.15115 - fllK/e. (34)
Both the Hanjalic" and Launder model and the Raj model take the form

e(2

S-C.1  T12S -C 2 - + R (35)

in rotating shear flow where C, 1 = 1.44 and C, 2 = 1.92. For the Hanjalic and Launder model

R= -C. 3 K(S- 2f) 2  (36)

where C,3 = 0.27, whereas for the Raj model

3(37)

where C,3 = 5.
In rotating shear flow, the transport equations for r"l and c are solved subject to the

initial conditions of isotropy (22) at time t = 0.

3. Discussion of the Results

For the two homogeneous turbulence problems to be considered, the models give rise
to a coupled set of first-order nonlinear ordinary differential equations which are solved by
a fourth-order accurate Runge-Kutta numerical integration scheme. First, the results for
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isotropic turbulence in a rotating frame will be presented. For this problem, the solutions
depend on fl, K0 , and e0 only through the dimensionless parameter fIKo/o. In Figures
1(a) - (b) the time evolution of the dimensionless turbulent kinetic energy (K* - K/Ko
and T - cot/Ko is the dimensionless time) obtained for the Bardina model is shown for two
moderate rotation rates: 'Ko/ro = 0.123 and flKo/e0 = 0.469. These two rotation rates
correspond to the test cases considered in the physical experiments of Wigeland and Nagib
[15]. It is clear that the agreement between the model predictions and the experiments is good
(however, it should be noted that the difference between these results and the predictions of
the standard model are small). This is not surprising since the Bardina model was calibrated
based on the same experimental data [7]. While the Bardina model performs well for weak
rotation rates, it has substantial problems for rapidly rotating isotropic turbulence. In Figure
1(c), the time evolution of the turbulent kinetic energy predicted by the Bardina model for
flKo/eo = 69.5 is compared with the direct simulations of Speziale, Mansour, and Rogallo
[14]. It is clear that the model drastically underpredicts the decay rate of the turbulent
kinetic energy. This arises from a deficiency in the model; it is a simple matter to show that,
for flKo/eo > 1.11, the Bardina model predicts that the turbulence Reynolds number Ret
increases during the decay - a result that is unphysical.

The time evolution of the turbulent kinetic energy predicted by the Hanjalic and Launder
model is shown in Figure 2(a) along with the predictions of the standard model and the
experimental data of Wigeland and Nagib on rotating isotropic turbulence corresponding
to fOKo/eo = 0.123. While the model does not do too bad a job for this case, it yields
worse results than the standard model. It then breaks down entirely for appreciable values
of flKo/eo0 . In Figure 2(b), the predictions of the Hanjalic and Launder model are shown
for flKo/eo = 0.469. The model yields extremely bad results for this case and becomes
unrealizable when" --r 4.2 (i.e., the dissipation rate becomes negative causing us to terminate
the calculations). It is the source term added by Hanjalic and Launder to the right-hand-side
of the dissipation rate equation that causes the model to become unrealizable for discernible
values of flKo/co. We will not show the results for the Pope model and the Raj model since
they are identical to the predictions of the standard model. Hence, like the standard model,
they are unable to predict the reduction in the decay rate of the turbulent kinetic energy
that arises from a system rotation of isotropic turbulence [14, 151.

Now, we will discuss the results obtained for rotating shear flow. In Figures 3(a) - (c), the
time evolution of the turbulent kinetic energy predicted by the Bardina model is compared
with the standard model and the large-eddy simulations of Bardina, Ferziger, and Reynolds
[16] for three rotation rates: fQ/S = 0, 0.25, and 0.5. (Again, K* = K/Ko whereas t* = St).
From Figures 3(b) - 3(c) it is clear that the Bardina model has little effect for appreciable
rotation rates; like the standard model, the Bardina model drastically underpredicts the
growth rate of the turbulent kinetic energy for fl/S = 0.25 and fO/S = 0.5. However, what
is more serious is that the Bardina modification degrades considerably the results for pure
shear flow (f0/S = 0) as shown in Figure 3(a). The growth rate of the turbulent kinetic
energy predicted by the Bardina model is too high. This results from the overprediction of
the equilibrium value of the shear anisotropy (b12),, = -0.191; the standard model yields a
value of (b,2),. = -0.18 which is closer to the experimental value of (b12)oo = -0.16.

In Figure 4, the predictions of the Hanjalic and Launder model are compared with the
standard model and the large-eddy simulation of Bardina, Ferziger, and Reynolds [16] for
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homogeneous shear flow (fl/S = 0). It is clear that the Hanjalic and Launder model predicts
much too strong a growth rate for the turbulent kinetic energy in homogeneous shear flow.
This results from an underprediction of the dissipation rate. In fact, the calculation is
terminated a short time after St = 2 due to the model becoming unrealizable through
negative dissipation rates. Since the Hanjalic and Launder model yields anomalous results
for pure shear flow (the most basic case) we will not bother to show the results for non-zero
rotation rates.

In Figures 5(a) - (b), the results predicted by the Raj model for rotating shear flow are
compared with those of the standard model as well as with the large-eddy simulations of
Bardina, Ferziger, and Reynolds [161. We do not show the results of the Raj model for pure
shear flow (fl/S = 0) since they are identical to those of the standard model. From Figure
5(a), it is clear that the Raj model yields improved predictions over the standard model for
the fl/S = 0.25 case. However, there are problems with the Raj model for rotation rates
that are appreciably larger than fl/S = 0.25 as can be seen in Figure 5(b). For the case
where fl/S = 0.5, the Raj model yields unrealizable results (i.e., the dissipation rate becomes
negative for values of St appreciably larger than 7).

It is clear from these results that simple corrections to the modeled dissipation rate
equation obtained by adding a source term that depends on rotptiona strains can give rise to
realizability problems (see Lumley [11). Since the standard modeled dissipation rate equation
is realizable with respect to K and c (i.e., as shown by Speziale [17], the standard model will
always yield positive kinetic energies and dissipation rates in homogeneous turbulent flows),
it is clear that these kind of ad hoc corrections are counterproductive. In order to properly
describe the turbulent flows discussed in this section, directional and two-point information
is needed in the modeling of the dissipation rate. Speziale and Gatski [18] have been recently
working on the development of a modeled transport equation for the tensor dissipation rate

k 7xk

This model for the tensor dissipation takes the form

-Cik (av + 2emjiflmp- , + inks 71

2 C (38)

-C 4(-,5Wjk + -jkW k)

in a rotating frame where C, 1 = 1.46, C, 2 = 1.83, C, 3 = 1.50, and C, 4 = 1.0. It was
developed for use in conjunction with the SSG model for the pressure-strain correlation
derived recently by Speziale, Sarkar, and Gatski [19]. In Figures 6(a) - (c), the results
predicted by the tensor dissipation model (used in conjunction with the SSG model) are
compared with the predictions of the Launder, Reece, and Rodi model and the large-eddy
simulations [161. It is clear that this new tensor dissipation model does a much better
job in capturing the trends of the large-eddy simulations. Most notably, the substantially
stronger growth rate of the fl/S = 0.25 case is, for the most part, captured; furthermore,
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the model does not restabilize for the fl/S = 0.5 case - a result that is consistent with linear
stability theory as well as with the large-eddy simulations. These improvements are not that
surprising in light of the recent findings of Durbin and Speziale [20] which suggest that the
dissipation rate tensor can be ansotropic in equilibrium homogeneous shear flows at high
turbulence Reynolds numbers.

4. Conclusions

Several modifications to the modeled dissipation rate transport equation that have been
proposed to account for rotational strains are compared critically for two test flows. The
following general conclusions can be drawn:

(1) The Pope [5] model yields the same predictions as the standard model for rotating
isotropic turbulence and for rotating homogeneous shear flow. These predictions are deficient
in that they fail to properly account for the reduction in the turbulence decay rate that results
from a system rotation of isotropic turbulence and they fail to account accurately for the
changes in the growth rate of the turbulent kinetic energy that result from a system rotation
of homogeneous shear flow which can either stabilize or destabilize the flow.

(2) The Hanjalic and Launder [6] model has major problems with the violation of real-
izability. It yields negative dissipation rates in rotating isotropic turbulence for appreciable
values of O1KO/eo. Furthermore, this modification degrades significantly the predictions for
homogeneous shear flow (the predicted growth rate of the turbulent kinetic energy is much
too large).

(3) The Bardina model [7] is only able to accurately predict the reduction in the decay rate
of the turbulent kinetic energy in rotating isotropic turbulence for weak to moderate rotation
rates where this effect is small. For flKO/co > 1, this model predicts too strong a reduction
in the turbulence decay rate. Furthermore, this model does not yield any improvements for
rotating homogeneous shear flow and mildly degrades the predictions for pure shear flow.

(4) The Raj [8] model yields the same deficient predictions as the standard model in
rotating isotropic turbulence. In rotating homogeneous shear flow, this model does yield
some improvements for moderate rotation rates for which r1/S < 0.3. However, for stronger
rotation rates the model becomes unrealizable and yields negative values for the turbulent
dissipation rate.

In order to properly describe rotating turbulent flows, some directional and two-point
information needs to be incorporated into models for the dissipation rate rather than the ad
hoc modifications discussed above. The directional information can be incorporated through
the use of the tensor dissipation. In this regard, the preliminary calculations presented in
Section 3 for rotating shear flow based on a modeled tensor dissipation rate equation appear
to be promising. However, the reduction in the decay rate of the turbulent kinetic energy
in rotating isotropic turbulence is a two-point phenomena; the inertial waves generated by a
system rotation scramble the transfer term in such a way that the phase coherence needed

9



to cascade energy from large to small scales is disturbed. Some limited two-point informa-
tion needs to be included based on an appropriate integral length scale which responds to
rotational strains. This issue is currently under investigation and will be the subject of a
future paper.
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Rotating Isotropic Decay
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SlKo/eo = 0.123, (b) flKo/eo = 0.469, (c) SlKo/eo = 69.5.
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Rotating Isotropic Decay
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Rotating Isotropic Decay
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Figure 2. The decay of turbulent kinetic energy in rotating isotropic turbulence:
Hanjalic and Launder model; - - - standard model; o experimental data [15]. (a) OIKo/vo -
0.123, (b) flKo/eo = 0.469.
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4.0 Rotating Shear Flow
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Figure 3. Time evolution of the turbulent kinetic energy in rotating shear flow for co/SKo =

0.296: - standard model; - - - Bardina model; o large eddy simulations [161. (a) l/S = 0,
(b) flIS = 0.25, (c) fl/S = 0.5.
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Figure 3. Time evolution of the turbulent kinetic energy in rotating shear flow for o/SKo =

0.296: - standard model; - - - Bardina model; o large eddy simulations [16]. (a) r?/S = 0,

(b) fil/S = 0.25, (c) f/S = 0.5.
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Figure 3. Time evolution of the turbulent kinetic energy in rotating shear flow for cO/SKO=
0.296: - standard model; - - - Bardina model; o large eddy simulations [161. (a) fl/S = 0,
(b) fl/S = 0.25, (c) fl/S = 0.5.
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Figure 4. Time evolution of the turbulent kinetic energy in homogeneous shear flow for

eo/SKo = 0.296: - standard model; - - - Hanjalic and Launder model; o large eddy

simulation [16].
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Figure 5. Time evolution of the turbulent kinetic energy in rotating shear flow for Co/SKo =

0.296: - standard model; - - - Raj model; o large eddy simulations (16]. (a) I2/S = 0.25,

(b) fO/S = 0.5.
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Figure 5. Time evolution of the turbulent kinetic energy in rotating shear flow for eo/SKo =

0.296: - standard model; - - - Raj model; o large eddy simulations [16]. (a) Q/S = 0.25,
(b) fl/S = 0.5.
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Figure 6. Time evolution of the turbulent kinetic energy in rotating shear flow for co/SKo =
0.296: - standard model; - - - tensor dissipation model [18]; o large eddy simulations
(16]. (a) Q/S = 0, (b) fl/S = 0.25, (c) f/S = 0.5.
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Figure 6. Time evolution of the turbulent kinetic energy in rotating shear flow for eo/SKo =

0.296: - standard model; - - - tensor dissipation model [18]; o large eddy simulations
[16]. (a) f)iS = 0, (b) fl/S = 0.25, (c) f)/S = 0.5.
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4.0 Rotating Shear Flow

(c) 0 5 0. 50
3.5

3.0

2.5

52.0

1.5-

1.0 oo-oooooooo °

0.5

0.0.
0 2 4 6 8 10

t*

Figure 6. Time evolution of the turbulent kinetic energy in rotating shear flow for eo/SKo =

0.296: - standard model; - - - tensor dissipation model [18]; o large eddy simulations
[161. (a) fl/S = 0, (b) fl/S = 0.25, (c) O/S = 0.5.
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